Loading [MathJax]/jax/output/HTML-CSS/jax.js

Giải bài tập tập hợp Q các số hữu tỉ

Bên cạnh việc nắm được khái niệm số hữu tỉ, biết cách biểu diễn số hữu tỉ trên trục số thì việc nhận biết được mối quan hệ giữa tập hợp các số tự nhiên, số nguyên và số hữu tỉ là cần thiết để hoàn thành những bài tập dưới đây.

Giải bài 1 trang 7 SGK đại số 7 tập 1

Điền kí hiệu ( , , ) thích hợp vào ô vuông:

- 3 N             -3 Z               -3 Q

23 Z                23 Q          N Z Q

Bài giải:
- 3  N                         - 3 ∈ Z                                 -3 ∈ Q

23 Z                   23 ∈ Q                N Z Q

Giải bài 2 trang 7 SGK đại số 7 tập 1

Trong các phân số sau 1215; 1520; 2432; 2028; 2736, những phân số nào biểu diễn số hữu tỉ 34
Bài giải:
Ta có:

1520 = 15:(5)20:(5) = 34

2432 = 24:832:8 = 34

2736 = 27:(9)36:(9) = 34

1215 34

2028 34

Vậy những phân số biểu diễn số hữu tỉ 34là :  1520; 2432; 2736

Giải bài 3 trang 8 SGK đại số 7 tập 1

So sánh các số hữu tỉ:
a) x = 27 và y = 311

b) x = 213300 và y = 1825

c) x = -0,75 và y = 34

Bài giải:

a) Ta có: x = 27 = 2.(11)7.(11) = 2277

y = 311 = 3.711.7 = 2177

Vì -22 < -21 và 77 > 0 nên x < y

b) Ta có: x = 213300

y = 1825 = 18.(12)25.(12) = 216300

Vì -213 > -216 và 300 > 0 nên x > y

c) Ta có: x = -0,75 = 75100 = 34 và y = 34

Vậy x = y

Giải bài 4 trang 8 SGK đại số 7 tập 1

So sánh số 0 với số hữu tỉ ab ( a,b ∈ Z, b 0) khi a, b cùng dấu và khi a, b khác dấu
Bài giải:
Với a, b ∈ Z, b 0
- Khi a , b cùng dấu thì ab > 0
- Khi a,b khác dấu thì ab < 0
Tóm lại: Số hữu tỉ ab ( a,b ∈ Z, b 0) là
  • dương nếu a,b cùng dấu, 
  • âm nếu a, b khác dấu, 
  • bằng 0 nếu a = 0

Giải bài 5 trang 8 SGK đại số 7 tập 1

Giả sử x = am ; y = bm ( a, b, m ∈ Z, m 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = a+b2m thì ta có x < z < y
Bài giải:
Ta có: x = am , y = bm ( a, b, m ∈ Z, m 0) và x < y
Nên a < b
Nếu x = 2a2m , y = 2b2m; z = a+b2m
Ta có a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Ta có a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) suy ra x < z < y


Mỗi bài toán có nhiều cách giải, đừng quên chia sẻ cách giải hoặc ý kiến đóng góp của bạn ở khung nhận xét bên dưới. Xin cảm ơn!

CÙNG CHIA SẺ ĐỂ KIẾN THỨC ĐƯỢC LAN TỎA!

Previous
Next Post »

EmoticonEmoticon

:)
:(
=(
^_^
:D
=D
=)D
|o|
@@,
;)
:-bd
:-d
:p
:ng
:lv
Cảm ơn các bạn đã ghé thăm trang GIẢI BÀI TẬP TOÁN và để lại những cảm nhận tích cực!