Góc nội tiếp.


Định nghĩa góc nội tiếp.

Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.
Cung nằm bên trong góc gọi là cung bị chắn.
Ví dụ:
H13-ch3-toan-9
Hình 13

Hình 13a, cung bị chắn là cung nhỏ BC.
Hình 13b, cung bị chắn là cung lớn BC.
Đó chính là điểm khác biệt giữa góc nội tiếp và góc ở tâm. Điểm khác biệt đó là gì, các bạn phát hiện ra chưa!
Hãy quay lại với bài góc ở tâm, ta thấy góc ở tâm chỉ chắn cung nhỏ hoặc nửa đường tròn.
H14-ch3-toan-9
Hình 14
Ở hình 14, dễ dàng nhận thấy các góc có đỉnh không nằm trên đường tròn, nên không phải là góc nội tiếp.
H15-ch3-toan-9
Hình 15
Ở hình 15, các góc có đỉnh nằm trên đường tròn, nhưng góc E ở hình 15a cả hai cạnh không chứa dây cung của đường tròn. Góc G ở hình 15b có một cạnh không chứa dây cung của đường tròn.
Ta đã biết số đo góc ở tâm bằng số đo cung bị chắn ($\leq$ $180^0$). Số đo góc nội tiếp có quan hệ gì với cung bị chắn, ta sẽ tìm hiểu ngay sau đây.

Định lí.


Sau khi thực hành đo góc nội tiếp và đo cung (thông qua góc ở tâm), với kết quả thu được, ta rút ra nhận xét số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
Từ đó có định lí:
Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
GT $\widehat{BAC}$: góc nội tiếp (O)
KL $\widehat{BAC}$ = $\frac{1}{2}$sđ⁀BC
Ta sẽ chứng minh định lí trong ba trường hợp:
1) Tâm O của đường tròn nằm trên một cạnh của góc $\widehat{BAC}$
Truong-hop-1
Trường hợp 1.
Ta có $\Delta$ OAC cân tại O (vì OA = OC = R)
=> $\widehat{BAC}$ = $\widehat{ACO}$
Ta lại có $\widehat{BOC}$ = $\widehat{BAC}$ + $\widehat{ACO}$ (theo tính chất góc ngoài của tam giác)
Hay $\widehat{BOC}$ = 2$\widehat{BAC}$ (vì $\widehat{BAC}$ = $\widehat{ACO}$)
=> $\widehat{BAC}$ = $\frac{1}{2}$$\widehat{BOC}$
Mà $\widehat{BOC}$ = sđ⁀BC (vì có AB là đường kính nên BC là cung nhỏ)
Do đó $\widehat{BAC}$ = $\frac{1}{2}$sđ⁀BC
2) Tâm O nằm bên trong góc BAC.
Truong-hop-2
Trường hơp 2
Để áp dụng được trường hợp 1), ta vẽ đường kính AD
Vì O nằm trong góc BAC nên tia AD nằm giữa hai tia AB và AC, ta có:
$\widehat{BAC}$ = $\widehat{BAD}$ + $\widehat{DAC}$
Mà $\widehat{BAD}$ = $\frac{1}{2}$sđ⁀BD (cm ở trường hợp 1)
$\widehat{DAC}$ = $\frac{1}{2}$sđ⁀DC (cm ở trường hợp 1)
Suy ra $\widehat{BAC}$ = $\frac{1}{2}$sđ(⁀BD + ⁀DC)
<=> $\widehat{BAC}$ = $\frac{1}{2}$sđ⁀BC (vì D nằm trên cung BC)
3) Tâm O nằm bên ngoài góc BAC.
Truong-hop-3
Trường hợp 3
Vẽ đường kính AD, vì O nằm bên ngoài góc BAC nên tia AB nằm giữa hai tia AD và AC, ta có:
$\widehat{DAC}$ = $\widehat{BAD}$ + $\widehat{BAC}$
=> $\widehat{BAC}$ = $\widehat{DAC}$ - $\widehat{BAD}$
Mà $\widehat{BAD}$ = $\frac{1}{2}$sđ⁀BD (cm ở trường hợp 1)
$\widehat{DAC}$ = $\frac{1}{2}$sđ⁀DC (cm ở trường hợp 1)
Suy ra $\widehat{BAC}$ = $\frac{1}{2}$sđ(⁀DC - ⁀BD)
<=> $\widehat{BAC}$ = $\frac{1}{2}$sđ⁀BC

Hệ quả.

Xét bài toán:
Cho hình vẽ:
He-qua
AB là đường kính.
Có AB là đường kính, ⁀AC = ⁀CD.
a) Chứng minh $\widehat{ABC}$ = $\widehat{CBD}$ = $\widehat{AEC}$
b) So sánh $\widehat{AEC}$ và $\widehat{AOC}$
c) Tính $\widehat{ACB}$
Giải:
a) Chứng minh $\widehat{ABC}$ = $\widehat{CBD}$ = $\widehat{AEC}$
Theo định lí góc nội tiếp, ta có:
$\widehat{ABC}$ = $\frac{1}{2}$sđ⁀AC
$\widehat{CBD}$ = $\frac{1}{2}$sđ⁀CD
$\widehat{AEC}$ = $\frac{1}{2}$sđ⁀AC
Mà ⁀AC = ⁀CD (gt)
Suy ra $\widehat{ABC}$ = $\widehat{CBD}$ = $\widehat{AEC}$
b) So sánh $\widehat{AEC}$ và $\widehat{AOC}$
Ta có $\widehat{AEC}$ = $\frac{1}{2}$sđ⁀AC
Mà $\widehat{AOC}$ = sđ⁀AC (số đo góc ở tâm)
Suy ra $\widehat{AEC}$ = $\frac{1}{2}$$\widehat{AOC}$
c) Tính $\widehat{ACB}$.
$\widehat{ACB}$ = $\frac{1}{2}$sđ⁀AEB
Mà sđ⁀AEB = $180^0$
Nên $\widehat{ACB}$ = $\frac{1}{2}$$180^0$ = $90^0$.
Qua bài toán trên, ta có hệ quả như sau:
Trong một đường tròn:
a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
c) Góc nội tiếp (nhỏ hơn hoặc bằng $90^0$) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
d) Góc nội tiếp chắn nửa đường tròn là góc vuông.

Như vậy, qua bài học này ta cần nắm được thế nào là góc nội tiếp, định lí về góc nội tiếp, biết cách chứng minh định lí đó ở ba trường hợp, nắm được các hệ quả...vận dụng giải bài tập.



Mỗi bài toán có nhiều cách giải, đừng quên chia sẻ cách giải hoặc ý kiến đóng góp của bạn ở khung nhận xét bên dưới. Xin cảm ơn!

CÙNG CHIA SẺ ĐỂ KIẾN THỨC ĐƯỢC LAN TỎA!

Previous
Next Post »

1 nhận xét:

Bấm vào đây để nhận xét
Unknown
admin
1/22/21, 7:26 PM ×

Giúp mình với mn .ai giải giúp mình hộ phần 3 hệ quả bài góc nội tiếp toán 9 vẽ hình từng trường hợp và chủ mình

Reply
avatar
Cảm ơn các bạn đã ghé thăm trang GIẢI BÀI TẬP TOÁN và để lại những cảm nhận tích cực!