[Toán 8] Chứng minh D là trung điểm của AF.

Ngày 14/8/2017 bạn Phương Thảo gửi bài toán.
Cho tam giác ABC vuông tại A. Phân giác BD, gọi E là hình chiếu của D trên BC.
a) Chứng minh AB = BE
b) Qua điểm E vẽ đường thẳng song song với BD cắt AC tại F. Chứng minh D là trung điểm của AF.

Trả lời cho bạn:

a) Xét hai tam giác vuông ABD và EBD có:
Cạnh BD chung
^ABD = ^EBD (BD là phân giác góc B)
Vậy Δ ABD = Δ EBD (cạnh huyền - góc nhọn)
Suy ra AB = BE (hai cạnh tương ứng)
giaibaitaptoan.blogspot.com
E là hình chiếu của D trên BC.

b) Ta có:
^BDE = ^DEF (1) (hai góc so le trong)
^ADB = ^EDB (2) (Δ ABD = Δ EBD)
^ADB = ^EFD (3) (hai góc đồng vị)
Từ (1) (2) (3) suy ra ^DEF = ^EFD
Do đó tam giác DEF cân tại D.
Suy ra DE = DF
Mà DE = AD (Δ ABD = Δ EBD)
Nên AD = DF
Ta lại có AD + DF = AF
Suy ra D là trung điểm của AF. (đpcm)


Mỗi bài toán có nhiều cách giải, đừng quên chia sẻ cách giải hoặc ý kiến đóng góp của bạn ở khung nhận xét bên dưới. Xin cảm ơn!

CÙNG CHIA SẺ ĐỂ KIẾN THỨC ĐƯỢC LAN TỎA!

Previous
Next Post »

EmoticonEmoticon

:)
:(
=(
^_^
:D
=D
=)D
|o|
@@,
;)
:-bd
:-d
:p
:ng
:lv
Cảm ơn các bạn đã ghé thăm trang GIẢI BÀI TẬP TOÁN và để lại những cảm nhận tích cực!