[Toán ?] Solve the following equations.
Ngày 15/4/2017 bạn Ryan Nguyễn yêu cầu bài toán:
Bài 10. Solve these equations:
a) $\frac{3x}{4}$ + $\frac{x}{2}$ = 5 b) $\frac{2n}{3}$ + $\frac{3n}{6}$ = 3
c) $\frac{3h}{2}$ - $\frac{h}{5}$ = 1 d) $\frac{4a}{3}$ - $\frac{3a}{5}$ = 2
e) $\frac{2k}{3}$ - $\frac{3k}{4}$ = 1,5 f) $\frac{4y}{5}$ - $\frac{5y}{4}$ = $\frac{1}{2}$
Bài 11: Solve the following equations:
a) $\frac{m + 1}{8}$ + $\frac{m + 3}{2}$ = 2 b) $\frac{3c + 2}{3}$ + $\frac{c - 2}{6}$ = 1
c) $\frac{2u - 1}{3}$ + $\frac{3u - 1}{2}$ = 3 d) $\frac{4 - 2t}{3}$ + $\frac{5 - t}{4}$ = 2
e) $\frac{5w + 2}{6}$ - $\frac{w + 1}{2}$ = 1 f) $\frac{2y - 1}{3}$ - $\frac{2y + 2}{4}$ = 2
g) $\frac{2x + 3}{3}$ - $\frac{3x - 2}{2}$ = 4 h) $\frac{4n - 2}{5}$ - $\frac{4 - n}{3}$ = 2
Trả lời cho bạn:
Bài 10:
a) $\frac{3x}{4}$ + $\frac{x}{2}$ = 5
<=> 3x + 2x = 20 <=> 5x = 20 <=> x = 4.
b) $\frac{2n}{3}$ + $\frac{3n}{6}$ = 3
<=> 4n + 3n = 18 <=> 7n = 18 <=> n = $\frac{18}{7}$
c) $\frac{3h}{2}$ - $\frac{h}{5}$ = 1
<=> 15h - 2h = 10 <=> 13h = 10 <=> h = $\frac{10}{13}$
d) $\frac{4a}{3}$ - $\frac{3a}{5}$ = 2
<=> 20a - 9a = 30 <=> 11a = 30 <=> a = $\frac{30}{11}$
e) $\frac{2k}{3}$ - $\frac{3k}{4}$ = 1,5
<=> 8k - 9k = 18 <=> -k = 18 <=> k = -18
f) $\frac{4y}{5}$ - $\frac{5y}{4}$ = $\frac{1}{2}$
<=> 16y - 25y = 10 <=> -9y = 10 <=> y = -$\frac{10}{9}$
Bài 11:
a) $\frac{m + 1}{8}$ + $\frac{m + 3}{2}$ = 2
<=> m + 1 + 4(m + 3) = 16 <=> m + 1 + 4m + 12 = 16 <=> 5m = 3 <=> m = $\frac{3}{5}$
b) $\frac{3c + 2}{3}$ + $\frac{c - 2}{6}$ = 1
<=> 2(3c + 2) + c - 2 = 6 <=> 6c + 4 + c - 2 = 6 <=> 7c = 4 <=> c = $\frac{4}{7}$
c) $\frac{2u - 1}{3}$ + $\frac{3u - 1}{2}$ = 3
<=> 2(2u - 1) + 3(3u - 1) = 18 <=> 4u - 2 + 9u - 3 = 18 <=> 13u = 23 <=> u = $\frac{23}{13}$
d) $\frac{4 - 2t}{3}$ + $\frac{5 - t}{4}$ = 2
<=> 4(4 - 2t) + 3(5 - t) = 24 <=> 16 - 8t + 15 - 3t = 24 <=> -11t = -7 <=> t = $\frac{7}{11}$
e) $\frac{5w + 2}{6}$ - $\frac{w + 1}{2}$ = 1
<=> 5w + 2 - 3(w + 1) = 6 <=> 5w + 2 - 3w - 3 = 6 <=> 2w = 7 <=> w = $\frac{7}{2}$
f) $\frac{2y - 1}{3}$ - $\frac{2y + 2}{4}$ = 2
<=> 4(2y - 1) - 3(2y + 2) = 24 <=> 8y - 4 - 6y - 6 = 24 <=> 2y = 34 <=> y = 17
g) $\frac{2x + 3}{3}$ - $\frac{3x - 2}{2}$ = 4
<=> 2(2x + 3) - 3(3x - 2) = 24 <=> 4x + 6 - 9x + 6 = 24 <=> -5x = 12 <=> x = -$\frac{12}{5}$
h) $\frac{4n - 2}{5}$ - $\frac{4 - n}{3}$ = 2
<=> 3(4n - 2) - 5(4 - n) = 30 <=> 12n - 6 - 20 + 5n = 30 <=> 17n = 56 <=> n = $\frac{56}{17}$.
Mỗi bài toán có nhiều cách giải, đừng quên chia sẻ cách giải hoặc ý kiến đóng góp của bạn ở khung nhận xét bên dưới. Xin cảm ơn!
Bài 10. Solve these equations:
a) $\frac{3x}{4}$ + $\frac{x}{2}$ = 5 b) $\frac{2n}{3}$ + $\frac{3n}{6}$ = 3
c) $\frac{3h}{2}$ - $\frac{h}{5}$ = 1 d) $\frac{4a}{3}$ - $\frac{3a}{5}$ = 2
e) $\frac{2k}{3}$ - $\frac{3k}{4}$ = 1,5 f) $\frac{4y}{5}$ - $\frac{5y}{4}$ = $\frac{1}{2}$
Bài 11: Solve the following equations:
a) $\frac{m + 1}{8}$ + $\frac{m + 3}{2}$ = 2 b) $\frac{3c + 2}{3}$ + $\frac{c - 2}{6}$ = 1
c) $\frac{2u - 1}{3}$ + $\frac{3u - 1}{2}$ = 3 d) $\frac{4 - 2t}{3}$ + $\frac{5 - t}{4}$ = 2
e) $\frac{5w + 2}{6}$ - $\frac{w + 1}{2}$ = 1 f) $\frac{2y - 1}{3}$ - $\frac{2y + 2}{4}$ = 2
g) $\frac{2x + 3}{3}$ - $\frac{3x - 2}{2}$ = 4 h) $\frac{4n - 2}{5}$ - $\frac{4 - n}{3}$ = 2
Bài 10:
a) $\frac{3x}{4}$ + $\frac{x}{2}$ = 5
<=> 3x + 2x = 20 <=> 5x = 20 <=> x = 4.
b) $\frac{2n}{3}$ + $\frac{3n}{6}$ = 3
<=> 4n + 3n = 18 <=> 7n = 18 <=> n = $\frac{18}{7}$
c) $\frac{3h}{2}$ - $\frac{h}{5}$ = 1
<=> 15h - 2h = 10 <=> 13h = 10 <=> h = $\frac{10}{13}$
d) $\frac{4a}{3}$ - $\frac{3a}{5}$ = 2
<=> 20a - 9a = 30 <=> 11a = 30 <=> a = $\frac{30}{11}$
e) $\frac{2k}{3}$ - $\frac{3k}{4}$ = 1,5
<=> 8k - 9k = 18 <=> -k = 18 <=> k = -18
f) $\frac{4y}{5}$ - $\frac{5y}{4}$ = $\frac{1}{2}$
<=> 16y - 25y = 10 <=> -9y = 10 <=> y = -$\frac{10}{9}$
Bài 11:
a) $\frac{m + 1}{8}$ + $\frac{m + 3}{2}$ = 2
<=> m + 1 + 4(m + 3) = 16 <=> m + 1 + 4m + 12 = 16 <=> 5m = 3 <=> m = $\frac{3}{5}$
b) $\frac{3c + 2}{3}$ + $\frac{c - 2}{6}$ = 1
<=> 2(3c + 2) + c - 2 = 6 <=> 6c + 4 + c - 2 = 6 <=> 7c = 4 <=> c = $\frac{4}{7}$
c) $\frac{2u - 1}{3}$ + $\frac{3u - 1}{2}$ = 3
<=> 2(2u - 1) + 3(3u - 1) = 18 <=> 4u - 2 + 9u - 3 = 18 <=> 13u = 23 <=> u = $\frac{23}{13}$
d) $\frac{4 - 2t}{3}$ + $\frac{5 - t}{4}$ = 2
<=> 4(4 - 2t) + 3(5 - t) = 24 <=> 16 - 8t + 15 - 3t = 24 <=> -11t = -7 <=> t = $\frac{7}{11}$
e) $\frac{5w + 2}{6}$ - $\frac{w + 1}{2}$ = 1
<=> 5w + 2 - 3(w + 1) = 6 <=> 5w + 2 - 3w - 3 = 6 <=> 2w = 7 <=> w = $\frac{7}{2}$
f) $\frac{2y - 1}{3}$ - $\frac{2y + 2}{4}$ = 2
<=> 4(2y - 1) - 3(2y + 2) = 24 <=> 8y - 4 - 6y - 6 = 24 <=> 2y = 34 <=> y = 17
g) $\frac{2x + 3}{3}$ - $\frac{3x - 2}{2}$ = 4
<=> 2(2x + 3) - 3(3x - 2) = 24 <=> 4x + 6 - 9x + 6 = 24 <=> -5x = 12 <=> x = -$\frac{12}{5}$
h) $\frac{4n - 2}{5}$ - $\frac{4 - n}{3}$ = 2
<=> 3(4n - 2) - 5(4 - n) = 30 <=> 12n - 6 - 20 + 5n = 30 <=> 17n = 56 <=> n = $\frac{56}{17}$.
EmoticonEmoticon